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I. Phya.: Condens. Malter3(1991) 5515-5524. Printedin the UK 

Calculations of phonon frequencies and dielectric 
constants of alkali hydrides via the density functional 
method 

D Kh Blat;, N E Zein$ and V I Zinenko; 
T E I Kirenskv Instiruleof Physics. Krasnoyank. USSR 
: I V Kurchalov Insutule of Atomic Energy. hloscou 123182, USSR 

Received 23 April 1990. in final form 28 March 1991 

Abstract. A convenient method forcalculatingphonon frequencies a t q  = 0 andmacroscopic 
dielectricconstantsincubicinsulatorsisdevelopedin the frameworkof thedensityfunctional 
method; it is applicable to the case of both local and non-local pseudopotentials. The 
equilibrium unit-cell volume, bulk modulus, equation of state. optical vibration frequencies 
and stalic dielectric constants are calculated for LiH and NaH. 

1. Introduction 

In the present paper we consider some aspects of the ‘first-principle’ calculations of the 
long-wavelength optical phonons in alkali hydrides. Though the connection between 
the dynamical matrix D$ and the static dielectric matrix ,y(q + g, q + g’) in insulators 
was recognized more than twenty years ago (Adler 1962, Sham 1969, Pick et a1 1970), 
the first microscopic calculations for ,y(q + g, q + g‘) and D$(q)  were made only 
recently in the framework of the density functional (DF) method. In insulators and 
semiconductors, due to noticeable inhomogeneity of the electron density along various 
directionsin the unit cell, it seemsmost naturaland promising tocombine the to method 
with the pseudopotential (PP) approach in k-space (Ihm er al1979). Nevertheless, even 
in this approach, calculations can be made in several ways and the papers dealing with 
dielectric screening and phonon frequencies may be conventionally divided in two 
groups, according to the method used. The first approach employs the so-called direct 
or frozen-phonon method, based on a supercell energy and force constant calculations 
(see, e.g. Chadi and Martin 1976, Wendel and Martin 1978, Martin and Kunc 1981, Yin 
and Cohen 1982, Resta and Kunc 1986 and references therein). In the second case, 
dielectric susceptibility, ,y(q + g, q + g’), is calculated directly (Van Camp et a1 1979, 
Baroni and Resta 1986, Hybeitsen and Louie 1987). Both approaches were used to 
calculate the frequencies of lattice vibrations, including the q+ 0 case, as well as 
the static dielectric constants in Si, Ge, LiCl and a number of other insulators and 
semiconductors. Each has its own merits and shortcomings. In particular, the direct 
method calculations are restricted to the case of q at points of reasonably high symmetry 
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and requires high accuracy, which is especially inconvenient in the case of q-0  
vibrations. On the other hand, the full dielectric matrix caIculations are pretty cum- 
bersome and, what is more, in the case of the non-local pseudopotential, D$(q) is 
expressed in terms of an analogue of x(q + g, q + g’ ) ,  rather than via the matrix ,y itself 
(Brovman and Kagan 1974), which requires additional efforts to be made. 

Earlier it was noticed (Zein 1984) that to calculate D$(q) in the DF approach, only 
the X C p  vectors, being the solution of a certain system of linear equation, are needed. 
Generally, these X$, are the derivatives ofeigenfunctions of the occupied states with 
respect to displacements~~ofthes-typeions. In essence, thesevectorsarea convolution 
of the matrixkand potential pc with the eigenvector p&). The right-hand side of the 
system represents a generalized force which can be self-consistently calculated using the 
known X?,, and qpk. The dynamical matrix, D;&q), is calculated after finding the 
system solution by iterations. To some extent this approach synthesizes the direct and 
dielectric matrix approaches, since, in Fact, it analytically repeats the steps usually taken 
numerically in the frozen-phonon method. Note that all calculations can also be made 
at any q and for non-local pseudopotentials without calculating the whole matrix. In 
the present paper such an approach is applied to finding optical vibration frequencies 
for cubic insulators in the limit q+ 0, which are known to be non-analytical in q 
(Born and Huan 1958). Explicit, well defined expressions For the transverse ( 0 ~ 0 )  and 
longitudinal (om) optical Frequencies, macroscopic dielectric constant E,  and effective 
charge Z are derived analogously to the corresponding expressions for these values via 
the ,y(q + g, q + g’) matrix (Pick et al1970). 

This general scheme was checked for the case of Si. We reproduced the results 
obtainedbythedirectmethod(YinandCohen 1982)andbythedielectricmatrixmethod 
(Baroni and Resta 1986). Afterwards it was applied to the infrared vibration-frequency 
calculations in the alkali hydrides LiH and NaH, which are insulators with a wide gap 
Eg - 6-10 eV. Thus they can be considered asa limitingcase for the validity of the local 
approximation for the DF. On the other hand, there exist both the set of local PP of the 
Heine-Animalu type, which were thoroughly fitted in pure metals (Bratkovsky et al 
1982), and the set of non-local a6 initio PP (Bachelet etall982) that permits one to make 
mutual verification of results. The hydrogen PP coincides with its potential - l / r  and, 
thus, the theory does not contain any new free parameters. To check the quality of the 
pseudopotentials used, some volume characteristics of hydrides were calculated: unit- 
cell equilibrium volumes, energies and bulk moduli. Previously they were usually cal- 
culated by the APW (Hama and Kawakami 1988), KKR (Kulikov 1978) or Hartree-Fock 
(Dovesi ef 01 1984) methods. The calculated data are in good agreement with the 
experiment and with the results obtained by other methods. After this checking was 
completed. the infrared vibration characteristics were obtained by using the same PP. 
ForLiH, thevaluesobtainedpointout that either thecoreoftheLi ionispretty softand 
the concept of the PP is not valid for our purposes or, more probably, that it is necessary 
to go beyond the LDA in this case. Authors are not aware of experimental data on NaH 
crystals (see also Dyck and Jex 1981), but the difference of the results obtained with the 
two independent sets of the PP makes the experimental data rather interesting. 

The paper is organized as follows. In section 2 the relevant formulae for calculating 
E and D$(q)  are summarized for completeness. We investigate the limit of q+ 0 and 
derive explicit, well converging expressions for wLo, uTO, E, and 2. Various aspects of 
the calculational procedure and the results obtained are discussed in section 3. In the 
appendix the acoustic sum rule for 2, defined by our procedure, is proved. 
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2. The dynamical matrix within density functional method 

As noted in the introduction, at present the local version of the density functional 
method is the only real basis for calculating the static properties in solids. The accuracy 
of the method was repeatedly checked in calculating structural properties and phonon 
frequencies of various solids. The total energy of the crystal having unit-cell volume Q 
and s ions in the cell with the basis vectors p s  in the local density approximation can be 
written in the k-representation (Ihm eta1 1979) as follows: 

d3 r  (Ex&) - pxc(r))p(r) + P& = 0)Z  (1) 
+ I, 

where Ovk = 1 or 0, depending on whether &vk < tF or > E ~ .  E&) is the density of 
homogeneous electron-gas exchange-correlation energy, p&) = d(&,,(p)p)/dp, while 
En is the interaction energy of point ions with charges Z, on the background of a 
homogeneous negative charge. The eigenvectors cpVk(g) correspond to the eigenvalues 
E , ~  of the Schrodinger equation 

’ (Q - & v k ) q a h  = 

H k ( g , g ‘ )  = ( k  + g)’/26,. + U(k + g, k + g’) (2) 

with the total potential U(k + g, k + g’) = V,(k + g, k + 8’) + Vi(g - g’) - 6(g - 
g’)b/Q, where V,(p,p‘) is anon-local pseudopotential representing electron-ion inter- 
action: 

V , ( k + g , k + g ’ ) = C [ & L ( k  + g , k + g ’ ) +  Lii(g-g’)lexp(-i(g-g’)p,) 

b/Q = lim[V,(g, 4) + 4nZ/Qq2] from (Brovman and Kagan 1974), and 
q-0 

Pressure can be found by differentiating (1) with respect to the volume, Q, and by 
the subsequent use of the Hellman-Feynman theorem (Yin 1983): 

where 

&,(k + g, k + g’) = I(k + g)26,. + V,(k + g, k + g‘) - 6/88,, 

and (X,&f,) denotes Z,.X,(g)A(g, g’)X,(g‘). 
Expressions for the dynamical matrix D?&q) calculations may be found directly 

from (l), if we imagine that s and s‘ ions are displaced from their equilibrium positions 
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by the vector U $  = U" exp(iqR) and find the total energy variation by perturbation 
theory up to umu8S' terms, closely following the procedure, carried out numerically in 
performing the frozen-phonon calculations (Zein 1984). To simplify the notation, we 
shall further consider only the crystals with cubic symmetry. Then 

D K h  Blnt ef nl 

which can be solved by iteration. 
D&(q) is the ion-lattice dynamical matrix, with the charges Zs. The equivalence of 

LJ&(q) defined by (4) and (5) to the conventional expressions for D$ can be checked 
directly, too. For the non-local pseudopotential case, one should use the generalization 
(Brovman and Kagan 1974) of the conventional expressions (Sham 1969. Pick ern/ 1970) 
for the dynamical matrix: 

which, in the case of the local pseudopotential. are transformed into the conventional 
one. 

Now let us expand XFOk into a complete set of eigenfunctions q . ,k tq (g )  with the 
wavevector q + k and find the expansion coefficients from ( 5 ) .  For XFVk we obtain 

and D&(q) from (4) goes over into (6) .  
It is worth noting at this stage that, in principle, our approach is completely equivalent 

to the frozen-phonon method and the same numerical results for D$j(q)  could be 
obtained by using both the methods, provided the one and the same approximation for 
the DF is taken. However, it seems to us that the D$(q)  calculations with (4) and (5) are 
more convenient, especially in the limit of q -+ 0, when non-analytical terms can be 
yielded separately. Let us consider this case more thoroughly. It is clear, in particular, 
from the form (6) of D:i(q) that in insulators the electron intraband transitions are not 
contained in D$(q). Thus in the limit of 9-0, due to the orthogonality of quh with 
variousv,itisconvenienttoselectblockswithg = Oandg #Oin,y(q + g , q  + g'),which 
depend on q differently (Pick eta/ 1970). After this blocking it is seen that the RHS of (5) 
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includes both the terms W? that are regular in q,  (at q - O ) ,  and irregular terms W y  
proportional to q @ q ~ / q * .  In the cubic crystals 

W:;,,(O)+ -4zZ,qe/Qq2 WZk(0)-t  -4nZ,q"/Qq2 wG,k(g # 0)- I+'? 

~ : ~ ( g  # 0)- W F  + ( 4 r r i , / ~ ~ , ) n " n ~ ~ : ( g  + 0) 

and the solution, X&,, of the system (5) also naturally breaks up into regular and 
longitudinal terms: 

n" = q"/q 

x : ~ ~  = xyVk + (4rr/Q&,)Z,nwnYX: + Y z y q y  (7) 

where XFvk,  Xf" are, respectively, the regular and longitudinal contributions with E, 
and Z, demanding further self-consistent determination. In (7)  the -47 terms are kept, 
since in calculating W r u k ( 0 )  - - ( 4 n / q 2 ) ( X ~ v h q v h ? .  it is these terms that make it pro- 
portional to qn/q2. The Y z Y  coefficient is found from (5) 

By equating coefficients for the regular and longitudinal terms, we obtain 

(&h - &uh)X?  = W$pvk (Ak - &vk)X: = w c q u k  + a q U h / a k y  (9) 

as well as self-consistent expressions for M':a(g) and W f k ( g ) .  They are determined for 
g # 0 and vanish for g = 0. 

W?k(g, g' )  = %,k(k + g, k g') + W?(RR:") Wfk(gig ' )  = W:"(R;) 
(10) 

R P ( g ) = 2 z X ~ . k ( g + g ' ) q . x ( g ' ) O . k .  
kug' 

R?(g)=2 x F v h ( g  +g% .a&')@ "k 

As defined, the WE@, g') quantities are antisymmetric in g and g'. In the appendix it 
is shown that W z  also conserves this property. Therefore. the RHS of system (9) is 
orthogonal to quh and this system always has a solution. Though the system determinant 
equals zero, the condition Z8 X T > ( g ) q u h ( g )  = 0 fixes the solution. 

The Z, and e, values are found from the condition of the self-consistency at g = 0. 
Since the XFuk vector is orthogonal to  quh, the contribution to them arises only from 
the -Y$Y terms in (8):  

kug' 

To determine 2, and E, separately, keep in mind that 

( ( J ' P V , k / J k y b . h ?  = - ( q v , h  ( J q v h / J k v ) )  

and that,aftersummingoverkwith P$:.,k from (8), there arise termsin thecubiccrystals 
thatareproportionaltoS,andSP,Thenitisclearthat the~H~of(1l)containsvectors 
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XFk and X f k  written in the form of an expansion in qDk from the solution of the system 
(9). Thus, in essence, (11) is 

D Kh Blot et a1 

By separating s-dependent and s-independent terms in this equation (in non-cubic 
crystals, terms proportional to n ' d ) ,  we obtain: 

The Z, thus defined automatically satisfy the acoustic sum rule Zs Z3 = 0, as shown 

An analogous decomposition into regular and irregular terms should be carried out 
in the appendix. 

in (4), by using the identity 

2 ( x f w ~ ~ ' ? u k q p k )  = z ( ( a q p k / a k , 9 ) x ; u k )  = (zs - Z ~ ) ~ c r $  

which follows from (9). Then in D$(q), terms corresponding to longitudinal vibration 
frequencies arise 

D:&) j D:~ .~ (o )  + ( 4 n Z , Z , . / ~ ~ , ) n * n @  
(13) X ; , , ( O )  = D$,r:i(0) -2~CC%W!?~qp,vk) .  

k.u 

For crystals with two atoms in the unit cell it follows immediately that D$ = DsS'Gep 
and 

= - D l 2 / p  uto = coto + 4 z Z f / Q e z p  (14) 

where p is: p-] = M ; '  + Mi'. The system of equations (9). (10). (11) and (12) com- 
pletely determines the lattice dynamics in the limit of q + 0. Its solution is achieved via 
3-4 iterations with an accuracy of lo-'. 

3. Details of the calculation and discussion 

The calculations have been carried out by using the local Heine-Animalu type pseudo- 
potentials, their parameters taken from the paper by Bratkovsky eta1 (1982), as well as 
the non-local ab inirio pseudopotentials from the work of Bachelet et al (1982). As 
compared with the work of Bachelet er a1 (1982), the only difference in construction of 
the non-local pseudopotentials concerned its decomposition into local and non-local 
parts. The local part was chosen as 

U&) = -(4,2Z/Qp2) exp( - p z y z )  cos(pr,,) (15) 
and the non-local part wasselectedso that their sumforthes, p, dcomponentscoincided 
with thatofBacheletctal(1982). Suchredistributionofthep~betweenitslocaland non- 
local part spermits the numberofplane wavesN,, in the basisset to beslightly diminished. 
Besides, some non-local PP'S for Li were constructed from atom configurations differing 
from those in Bachelet et a1 (1982). Usually, the calculations for the local PP case were 
made using 59 plane waves and those for the non-local case using 137 waves. The Fourier 



Calculations of frequencies and constants of alkali hydrides 5521 

Table 1. MeH hydrides and pure Me volume properties. calculated at R = RMD. y = 0.5 for 
a l l t h e n o n - l o c a l ~ ~ , ~ ~  = 2.0forPPfromset3and4.RL, = 161.5au,BNr= 254.49au,RL, = 
112.99au,RN,,= 197.22au,RS,=270.011au. 

Me MeH 

Element and its E p E P B 
NN ppparamerers (a") (kbar) (au) (kbar) (kbar) 

1 Li" -0.253 0.1 -0.835 -14.0 495.6 
2 Lib -0.264 5.2 -0.849 17.1 243.6 
3 Li (sO,sp" 25) -0.271 10.3 -0.836 -20.0 
4 Li (s".'~"') -0.273 11.4 -0.845 -13.6 

Li (expt.) 0 0 341.0 
5 Na* -0.224 0.1 -0.763 32.4 184.1 
6 Nab -0.213 6.3 -0.804 44.7 206.2 

Na (expt.) 0 0 197.2 
7 Sib -9.30 27.8 - - - 
a Bratkovskyetol1982 

Bacheletetal1982. 

transformed image of UNL(k + g. k + g') wascalculated numerically by integration over 
21 points in the r-space. The JH,/Jk@ derivatives necessary for 8pvk/8k* determination 
were found analytically, while J puk/Jk" themselves were obtained from the solution of 
the system 

(16) 
with the additional condition (dpUk/Jk*p,,) = 0. Usually the H matrix was transformed 
into Jacobi form and only two lower eigenvalues and their eigenvectors were found. 
Integration in the k-space was made over 102 points in the 1/48 irreducible part of the 
Brillouin zone with the quadratic interpolation of the functions between them. We used 
the approximation of Perdew and Zunger (1981) for E&), which was based on the 
Monte Carlo results (Ceperley 1978). To find JVi(g)/Jum with the previously obtained 
V,(g), 2-3 iterations are required. 

The technique was verified for the case of Si with non-local PP from the work of 
Bachelet eta1 (1982). The results are summarized in tables 1 and 2 and closely reproduce 
the values of wm and E, in Si, obtained previously with similar PP by Yin and Cohen 
(1982) and Baroni and Resta (1986). The 2, = Oin this case due to the symmetryof the 
diamond-type lattice. 

Under normal conditions, alkali hydrides are insulators having NaC1-type structure. 
There occurs a first-order transition in NaH, KH and CsH to the CsC1-type structure 
under a certain pressure, which is probably accompanied by metallization (Hochheimer 
et a1 1985, Duclos et a1 1987). In table 1 we summarized the energy, pressure and bulk 
modulus values for LiH and NaH. The calculations were made with the local Heine- 
Animalu-type PP with the parameters taken from the work of Bratkovsky et al(l982) 
and with non-local PP from that of Bachelet et ai (1982). For LiH, the PP was also 
constructed from the s0-'po.' atom configuration, this being closer to the Li ion state in 
the LiH crystal. This set of the PP'S was chosen to check the influence of the PP form on 
the results obtained. In all cases, the application of the PP used yielded zero pressure for 
the experimental volume in pure metals with a rather high accuracy. Both the energy 

(fh - Euk)aPuk/Jkn = -(JA/Jk, - a&,k/Jk,)P.k 
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Table 2. Phonon frequencies and dielectric constants for LiH, NaH and Si. rr parameters 
are those from corresponding set in table 1. and w is in THz. 

, ,  , ,  

NN m i 0  WLO E, z 
, ..,., , , ,  , , ,..,,, , , ,,,, ,., , , . , I , ,  I , ,, 

1 LiH 18.1 28.3 4.81 1.03 
2 LiH 10.0 24.2 5.64 1.09 
3 LiH 12.7 24.4 5.88 1.05 
4 LiH 12.5 24.5 5.93 1.06 

5 NaH 8.52 12.3 3.54 0,94 
6 NaH 5.15 10.6 3.71 0.99 
7 Si 15.0 15.0 12.2 0 

expr. LiH 18.4 33.5 3.61 1.11 

expt. Si 15.5 15.5 11.4 0 
, , , . I . ,  , , ., ,,, , , , , , , , , ~ ~~ 

--+ 
I . .  
0 10 20 30 40 M 60 

P IGPol 

Figure ].The NaHequationofstate. Calculations 
(full curve) were carried out for the BI phase, 
Experimental data (broken curve-to guide the 
eye) are from the paper of Duclos et a1 (1987). 

0 80 

O M )  

0 LO - .x 
c1 
- 

0 20 

0 

-0 20 
0 x w  L 0 

Figure 2. The E dependence on k for symmetry 
directions in the BZ of LiH. Full curve: cal- 
culations with the rP from the paper of Bachelet 
et a1 (1982); broken curve: APW calculations of 
HamaandKawakami( 1988).The bottomsoflow- 
lying bands are matched. 

and pressure were calculated according to (1) and (3). The sensitivity of results to the 
change of NB is negligible in the case of N, greater than 137 for the non-local PP and 59 
for the local case. In the recent paper by Duclos ef a1 (1987) the equation of state was 
investigated for NaH in the interval of MOO kbar. The transition to the B2 phase of 
CsCl type occurs a t p  - 300 kbar. Our data for the equation of state, calculated with (1) 
and (3), are shown in figure 1 and appear to be in good agreement with experiment, We 
also find the transition from the B1 phase to the B2 insulator phase at approximately 
300 kbar, but, since the possibility of the electron system metallization should be taken 
into account, this value should be determined more accurately. For the same reason we 
omitted data concerning the B2 phase. 

In figure 2 the E , ~  dependence on k for LiH is shown for the PP, with parameters 
taken from the work of Bachelet era1 (1982). It is well known that these dependences 
obtained by the DF method are hardly worth comparing with the experiment, especially 
in insulators. Therefore we compared them with the analogous curves, calculated using 
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the APW method (Hama and Kawakami 1988) with the same DF as in our work. The 
curves are in good agreement, if the uncertainty in the choice of the zero point is ruled 
out by matching the bottoms of the bands at k = 0. Using these PP, we calculated wTo, 
wLo, Z and E,, following (9), (10). (12) and (14). The results are presented in table 2. 
For the LiH case, the transverse frequency calculated with the local PP is in good 
agreement with the experiment (Verble eta/ 1968), but the use of various PP results in 
appreciable deviations of the values. The difference in the data obtained with the local 
and non-local PP should in principle be awaited, as the parameters of the local PP are 
fitted to reproduce the properties of pure metalsand the 'transferability' (Bachelet eta1 
1982) under changing one class of crystals (metals) to another (insulators) may be lost 
by them. However, the difference between the non-local theory and the experiment 
points out that either the local approximation fails for the DF in insulators with such a 
wide gap, or the concept of the DF itself is violated. The second item is valid only for 
non-local potentials, when the introduction of the functional, depending only on p ,  has 
only variational meaning. We believe that corresponding experiments on NaH are 
desirable. 

4. Conclusion 

In this paper we present the algorithm for calculating the optical vibration frequencies 
at q = 0 and macroscopic dielectric constants in dielectrics. It can be used both with the 
local and non-local PP'S. As an example, we have calculated the properties of some alkali 
hydrides. No extra PP parameters were used as compared with pure metals: all of them 
were previously fitted to reproduce pure metals properties (Bratkovsky et a1 1982) or  
were obtained from the atom calculations (Bachelet et a/ 1982). Both the NaH and LiH 
equilibrium data are well reproduced in our calculations but the values obtained with 
different forms of the PP'S differ significantly; this can be attributed to a failure of the 
PP method or/and the local approximation. Unfortunately, due to the lack of the 
experimental data for NaH one cannot judge whether our approach with the local PP is 
successful in this case. Therefore, the corresponding additional experiments are highly 
desirable. The authors believe that the approach presented permits the investigation of 
the influence of the electron subsystem on phonon frequencies in dielectrics in a rather 
simple manner. 

Appendix 

Below it will be shown that 2,. defined by (12), satisfy the acoustic sum rule Zs Z, = 0 
(Pick er a/ 1970). Let us introduce the value X :  = Zs X y .  Then 

( H A  - E,k)XP 2 WyFpk. (AI) 

It followsfrom ( 5 ) ,  that Wruk = (g - g')"V,(k + g, k + g'). Suppose that 

k - - Wr = (g - g')"V(k + g, k + g'). 

The solution of the system (Al) with these W s  is 
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where Lfk can be found from the condition of the orthogonalization of Xp to qVk. 
R@(g) = Zs Rr(g )  can be found with these Xp, as it follows from rewriting (5): 

D Kh Blat et a1 

and 

Rn(g) = -6" qrhk + g')qt,h(&?')@&,h = -f'P(g). ('45) 
hg' 

Finding Wyvk with this R"(g) w'e see that (A2) is true and the self-consistent solution of 
(Al) is Xp(g), defined by (A3). Besides, this Xp can be used to calculate the sum 

which is zero, as the sum Zk (quRq&3vk equals Z = Xs Zs-the total charge of the 
elementary c e l l d u e  to the normalizing condition. 

Despite this, RFh(-g) = -R&(g)from(A4) and thisresultsintheorthogonalityof 
the RIiS of (9) and qvk. 
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